|
给大家转一篇文章:) ?( |( M5 F7 f; p6 l
% x' {5 ^( U# F- i1 U1 y% A6 k
节能---常识比技术更重要! J) Q& ^. m/ i' F+ I
- ?; R# t6 o& F' x4 `
人们知道,物质是不灭的,能量是守衡的,它只能从一种形式转换为另一种形式。比如,发动机是将热能转换为机械能,电动机是将电能转换为机械能。在各自的转换过程中,就涉及效率问题,即有功功率与无功功率之比。技术所要解决的核心问题,就是提高转换效率。节能,从技术意义上讲就是减少无功功率损耗
- v$ d3 d w& M
9 m" [! e; n# Z3 p) }* ?/ W: P发动机和电动机是应用最多、耗能最大的动力机械,从技术层面看, 发动机因电喷技术的采用使热效率大增。电动机因高导磁、低导电硅钢片的应用,效率也提高不少,发动机再一味的要提高效率已是有相当难度了。电动机还可以提高几个点,但可能会得不赏失,增加材料消耗和制造成本。
7 C j4 |! `6 [( U2 E/ _
% G1 f; @9 w4 A% }' D在我看来,谈发动机和电动机节能,常识比技术更重要!7 W! j, h7 ]6 d- z: m0 @, o+ s1 i
6 j ^5 p a6 m, ^+ U' Y
人都说日本汽车省油,以为日本发动机好。其实精明的日本人车体做的轻,起动惯性阻力小,起动和运行特性就当然好,表象上是百公里耗油少,实质上是把有功功率给降下来了。中国人爱图排场,讲大气,车体重,推动车体就要耗用很多功,能不费油吗?: {0 q% E1 I1 W+ `
& j7 z" K. q4 R) [! S: {, ?4 A, q
路面和操作是更为重要的因素。好的路面省油不用解释,操作却有很多学问,比如保持经济速度,不要过快或过慢,减少刹车,合理利用惯性力,掌握速度、加速度、离心力的基本常识,提速时合理加油,转弯时合理减速,诸如此类这些常识性的道理若不懂,再好的发动机都不会省油。
: }3 F) ^) `+ F/ ^" M3 V
! y: n6 S% E! g N' y3 G' B* H, q再说电动机节能,国家节能计划要求电动机效率提高5个百分点,达到85~90%以上。提高电动机效率并不是难事,设计上多用些硅钢片和电磁线,以降低磁通密度减少铁耗和铜耗就能解决问题。但我看来,国家并没有关注到问题的实质,实质问题是普遍的不会使用。电动机效率是指在额定负荷下的参数值,而使用普遍存在的问题是负荷过低,大马拉小车,过低的负载率会造成过低的功率因数,加大了无功损耗,制造上提高的效率百分点被不合理使用冲销了还不及。由于不懂电动机常识,人们有个习惯心理,怕电动机发热,往往选型就过大,实际上电动机的设计温升一般要70度左右,它是根据电磁线绝缘漆的耐热等级确定的,一般B级绝缘漆的耐热温度是130度,所以,不要怕电动机烫手。) q4 j% K8 r2 u6 T3 F) Q
; X& Q- c3 g0 a2 ]
电动机使用普遍存在的另一个问题是没有合理给予功率因数补偿。电动机是感性负载,电流超前电压,必须用电容器这种容性负载来给予合理补偿,以减少功率因数角。这是常规技术,只是人们习惯性的不用罢了。很多冠以高效节能的节电器,就是电容补偿器。; |& L& p' H) J/ W; y) H
9 X2 R: y, [7 r( W' z9 T电动机型号、规格少也是造成不合理选用的主要因素。比如,本来电动机有很多工作制分类,如连续工作制的、断续工作制的、高启动转矩的、双速的等等,日常很少根据机械工作特性选用。在功率等级方面,国标制定的功率等级不尽合理,跨度太大,比如标准规格7.5KW、11KW、15KW、18.5KW,其间千瓦数间隔太大,也造成无法合理选用,习惯上宁可选大,也不选小,造成大马拉小车的现状。
; t+ C' P. |7 K9 ~( U
0 ?+ f' X3 O: z由于缺乏常识,不少人就形成一种不好习惯,就是喜欢以无知骗人和受骗。一提倡节能,各种节油器、节电器铺天盖地的多,真的能解决问题吗?学会识别。我认为,节能-----当务之急------常识比技术更重要! |
|